Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285434

RESUMO

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/genética , SARS-CoV-2/genética , 60697 , Capuzes de RNA
2.
Redox Biol ; 63: 102752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245288

RESUMO

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.


Assuntos
COVID-19 , Ferroptose , Humanos , SARS-CoV-2 , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Tratamento Farmacológico da COVID-19
4.
J Med Virol ; 94(11): 5574-5581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869417

RESUMO

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , SARS-CoV-2 , Animais , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/genética
5.
J Med Virol ; 94(8): 3605-3612, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35355296

RESUMO

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the causative agent of the current coronavirus disease 2019 pandemic. Development of animal models that parallel the clinical and pathologic features of disease are highly essential to understanding the pathogenesis of SARS-CoV-2 infection and the development of therapeutics and prophylactics. Several mouse models that express the human angiotensin converting enzyme 2 (hACE2) have been created, including transgenic and knock-in strains, and viral vector-mediated delivery of hACE2. However, the comparative pathology of these mouse models infected with SARS-CoV-2 are unknown. Here, we perform systematic comparisons of the mouse models including K18-hACE2 mice, KI-hACE2 mice, Ad5-hACE2 mice and CAG-hACE2 mice, which revealed differences in the distribution of lesions and the characteristics of pneumonia induced. Based on these observations, the hACE2 mouse models meet different needs of SARS-CoV-2 researches. The similarities or differences among the model-specific pathologies may help in better understanding the pathogenic process of SARS-CoV-2 infection and aiding in the development of effective medications and prophylactic treatments for SARS-CoV-2.


Assuntos
COVID-19 , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2
6.
Artigo em Inglês | MEDLINE | ID: mdl-34675980

RESUMO

OBJECTIVE: To explore the influence of systematic nursing intervention on the life ability and quality of senile dementia patients. METHODS: Total of 82 senile dementia patients who were admitted to our hospital from January 2018 to January 2020 were divided into two groups according to the random number table, and the nursing intervention was analyzed. 41 patients in the control group were given routine nursing care, and 41 patients in the observation group were given systematic nursing intervention. Patients were assessed cognitively using the Montreal Cognitive Assessment Scale (MoCA). The Barthel index and SF-36 were used to evaluate the patients' daily activity function and quality of life. A Symptom Checklist-90-Revised (SCL-90-R) was used to assess mental distress. The Social-Adaptive Function Rating Scale (SAFE) and Social Skills Inventory (SSC) were used to evaluate the patients' social interaction ability before and after nursing intervention. Nursing satisfaction was distributed to patients in the form of a self-prepared nursing satisfaction questionnaire for scoring. RESULTS: After the nursing intervention, the MoCA scores of patients in the two groups were higher than those before the nursing intervention, and the scores in the observation group were higher than those in the control group (P < 0.05). After the nursing intervention, the Barthel index scores of patients in the two groups were higher than those before the nursing intervention, and the scores in the observation group were higher than those in the control group (P < 0.05). After the nursing intervention, the SF-36 scores of patients in the two groups were higher than those before the nursing intervention, and the scores in the observation group were higher than those in the control group (P < 0.05). After nursing intervention, the SCL-90-R scores of patients in the two groups were lower than those before nursing intervention, and the scores in the observation group were lower than those in the control group (P < 0.05). After the nursing intervention, the SAFE scores of patients in the two groups were lower than those before the nursing intervention, and the safe scores of the observation group were lower than those of the control group (P < 0.05). After the nursing intervention, the SSC scores of patients in the two groups were lower than those before the nursing intervention, and the scores in the observation group were lower than those in the control group (P < 0.05). After nursing intervention, the total satisfaction degree of the control group (80.49%) was lower than that of the observation group (97.56%) (P < 0.05). CONCLUSION: The implementation of systematic nursing intervention is conducive to improve the cognitive function, activity of life, and quality of life of senile dementia patients who have a positive effect, and nursing satisfaction is higher.

7.
J Ethnopharmacol ; 241: 112011, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173876

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine, Acanthopanax giraldii Harms, is commonly used to treat arthralgia due to wind, cold and dampness, as well as weakness in the feet and knees. Its other reported effects include eliminating flatulence, strengthening muscles and bones, and delaying aging. The polysaccharides in A. giraldii Harms are the major bioactive substances that confer the herb's antioxidant properties as well as anticancer and antiviral effects. AIMS OF THE STUDY: To elucidate the underlying mechanism and signaling cascade involved in the homogeneous A. giraldii Harms polysaccharide II (AHP-II)-mediated immunomodulation of mice macrophages. MATERIALS AND METHODS: The phagocytosis of neutral red and the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were measured to determine AHP-II-induced macrophage activation. Confocal microscopy and flow cytometry were used to confirm the binding of AHP-II to macrophages. The involvement of Toll-like receptor (TLR) 4 in AHP-II-induced macrophage activation was demonstrated using antibody blocking and macrophages from C3H/HeJ TLR4-mutant mice. Western blotting was used to map AHP-II-induced downstream signaling pathways. RESULTS: AHP-II increased the phagocytosis of macrophages and the release of nitric oxide, IL-6 and TNF-α cytokines. Direct, saturable and reversible binding of AHP-II to macrophages was observed, while it can be inhibited by the anti-TLR4 antibody. In addition, the presence of the anti-TLR4 antibody inhibited AHP-II-induced macrophage IL-6 and TNF-α production in the peritoneal macrophages of C3H/HeJ mice. Moreover, AHP-II-TLR4-stimulated macrophages activate the downstream intracellular ERK and JNK/nuclear factor (NF)-κB signaling pathways. In addition, the AHP-II-mediated regulation of IL-6 and TNF-α production from macrophages was greatly affected by specific ERK, JNK and NF-κB inhibitors. CONCLUSION: Our study elucidated the immunomodulatory mechanism of AHP-II in macrophage activation and identified TLR4 as the main receptor coordinating AHP-II binding. Our findings suggest AHP-II may be used as a novel immunopotentiator for medical purposes.


Assuntos
Eleutherococcus , Macrófagos Peritoneais/efeitos dos fármacos , Polissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação , NF-kappa B/metabolismo , Casca de Planta , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...